
Making TCP/IP Viable for Wireless Sensor
Networks

Adam Dunkels, Juan Alonso, Thiemo Voigt
Swedish Institute of Computer Science

{adam,alonso,thiemo}@sics.se

Abstract— The TCP/IP protocol suite, which has proven itself
highly successful in wired networks, is often claimed to be
unsuited for wireless micro-sensor networks. In this work, we
question this conventional wisdom and present a number of
mechanisms that are intended to enable the use of TCP/IP
for wireless sensor networks: spatial IP address assignment,
shared context header compression, application overlay routing,
and distributed TCP caching (DTC). Sensor networks based on
TCP/IP have the advantage of being able to directly communicate
with an infrastructure consisting either of a wired IP network
or of IP-based wireless technology such as GPRS. We have
implemented parts of our mechanisms both in a simulator
environment and on actual sensor nodes. Our preliminary results
are promising.

I. INTRODUCTION

Many wireless sensor networks cannot be operated in iso-
lation; the sensor network must be connected to an external
network through which monitoring and controlling entities can
reach the sensor network. The ubiquity of TCP/IP has made
it the de-facto standard protocol suite for wired networking.
By running TCP/IP in the sensor network it is possible to
directly connect the sensor network with a wired network
infrastructure, without proxies or middle-boxes [5]. It is often
argued that the TCP/IP protocol stack is unsuited for sensor
networks because of the specific requirements and the extreme
communication conditions that sensor networks exhibit. We
believe, however, that by using a number of optimization
mechanisms, it is possible to achieve similar performance
in terms of energy consumption and data throughput with
TCP/IP as that obtained by using specialized communication
protocols, while at the same time benefiting from the ease of
interoperability and generality of TCP/IP.

We envision that data transport in a TCP/IP sensor net-
work is done using the two main transport protocols in the
TCP/IP stack: the best-effort UDP and the reliable byte-
stream TCP. Sensor data and other information that do not
require reliable transmission is sent using UDP, whereas TCP
is used for administrative tasks that require reliability and
compatibility with existing application protocols. Examples of
such administrative tasks are configuration and monitoring of
individual sensor nodes, and downloads of binary code or data
aggregation descriptions to sensor nodes.

The contribution of this paper are our innovative solutions
to the following problems with TCP/IP for sensor networks:

IP addressing architecture. In ordinary IP networks, IP
addresses are assigned to each network interface that is con-

nected to the network. Address assignment is done either using
manual configuration or a dynamic mechanism such as DHCP.
In a large scale sensor network, manual configuration is not
feasible and dynamic methods are usually expensive in terms
of communication. Instead, we propose a spatial IP address
assignment scheme that provides semi-unique IP addresses to
sensor nodes.

Header overhead. The protocols in the TCP/IP suite have
a very large header overhead, particularly compared to spe-
cialized sensor network communication protocols. We believe
that the shared context nature of sensor networks makes header
compression work well as a way to reduce the TCP/IP header
overhead.

Address centric routing. Routing in IP networks is based
on the addresses of the hosts and networks. The application
specific nature of sensor networks makes the use of data-
centric routing mechanisms [6] preferable over address-centric
mechanisms, however. We propose a specific form of an
application overlay network to implement data-centric routing
and data aggregation for TCP/IP sensor networks.

Limited nodes. Sensor nodes are typically limited in terms
of memory and processing power. It is often assumed that the
TCP/IP stack is too heavy-weight to be feasible for such small
systems. In previous work [4], we have shown that this is not
the case but that an implementation of the TCP/IP stack in fact
can be run on 8-bit micro-controllers with only a few hundred
bytes of RAM.

TCP performance and energy inefficiency. The reliable
byte-stream protocol TCP has been shown to have serious
performance problems in wireless networks [2]. Moreover,
the end-to-end acknowledgment and retransmission scheme
employed by TCP causes expensive retransmissions along
every hop of the path between the sender and the receiver, if a
packet is dropped. We have developed a distributed mechanism
similar to TCP snoop [2] that we believe can be used to
overcome both problems.

While we are not aware of any research on TCP/IP for
wireless sensor networks, there is a plethora of work being
done on TCP/IP for mobile ad-hoc networks (MANETs).
There are, however, a number of differences between sensor
networks and MANETs that affect the applicability of TCP/IP.
MANET nodes are operated by human users, whereas sensor
networks are intended to be autonomous. The user-centricity of
MANETs makes throughput the primary performance metric,
while the per-node throughput in sensor networks is inherently

low because of the limited capabilities of the nodes. Instead,
energy consumption is the primary concern in sensor networks.
Finally, TCP throughput is reduced by mobility [7], but nodes
in sensor networks are usually not as mobile as MANET
nodes.

In Sections II through VI we describe our proposed solu-
tions to the above problems and report on preliminary results.
Finally, Section VII concludes the paper and presents the
direction of our future work.

II. SPATIAL IP ADDRESS ASSIGNMENT

For most sensor networks, the data generated by the sensor
nodes needs to be associated with the spatial location where
the data was sensed. It is therefore a reasonable assumption
that the nodes in a sensor network have some way of deter-
mining their location, and methods for localization in sensor
networks have been developed [14].

For TCP/IP sensor networks, we propose a spatial IP ad-
dress assignment mechanism to solve the problem of address
assignment. With spatial IP address assignment, each sensor
node uses its spatial location to construct an IP address. Since
we assume that the nodes are aware of their own spatial
location, the address assignment requires neither a central
server nor communication between the sensor nodes.

y

10.0.6.4

E

10.0.0.2

A

10.0.4.5

D

10.0.2.3

C

B

10.0.4.10

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
x

10.0.0.0/255.255.252.252

10.0.6.4

E

10.0.0.2

A

10.0.4.5

D

10.0.2.3

C

B

10.0.4.10

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
x

y

10.0.4.0/255.255.254.254

Fig. 1. Example spatial IP address assignment and two regional subnets.

Figure 1 shows an example network with spatially assigned
IP addresses. In this particular network, each sensor has
constructed its IP address by taking the (x, y) coordinates of
the node as the two least significant octets in the IP address.
We do not intend to specify the specific way that the addresses
are constructed, but assume that it will vary between different
kind of sensor networks.

Because location information is encoded in the IP addresses,
we can define a regional subnet as a set of sensor nodes
that share a prefix (Figure 1) and implement a straightfor-
ward regional broadcast mechanism, analogous to ordinary IP
subnet broadcasts. This mechanism does not require a special
mapping between logical and physical location as needed, e.g.,
in GeoCast [10].

The spatially assigned IP addresses are not guaranteed to be
unique, since two or more adjacent sensor nodes may obtain
the same location coordinates and thereby construct the same
address. Nodes with duplicate addresses are in the proximity
of each other, however, which helps to avoid routing problems;

nodes with duplicate addresses are likely to share large parts of
routing paths towards the nodes. Transport layer port number
conflicts for sensors that are able to overhear each other’s radio
communication can be resolved by passive monitoring of the
neighbors’ communication.

III. HEADER COMPRESSION

Energy is often the most scarce resource in wireless sensor
networks, and for many applications radio transmission is the
most expensive activity [12]. The minimum size of a UDP/IP
header is 28 bytes and a 4 bytes sensor data value sent using
using UDP/IP has a 87.5% header overhead, which cause large
amounts of energy to be spent in transmitting the header.

In sensor networks, all sensor nodes are assumed to co-
operate towards a common goal, and therefore the nodes
share a common context. For that reason, all nodes can agree
on specific UDP/IP header field values for sensor data UDP
datagrams. The headers can then be compressed using simple
pattern-matching techniques. For example, since all nodes are
part of the same IP subnet, there is no need to transmit full
IP addresses in the headers of packets that are sourced from
or are destined to nodes in the sensor network. Similarly, by
utilizing only a small range of UDP ports for the sensor data
datagrams, transmitting full 16-bit port numbers is not required
for packets containing sensor data.

For TCP connections, standard header compression tech-
niques [3], [9] can be used, but the specific requirements of the
sensor network place additional challenges. For instance, while
ordinary TCP header compression may be content with the
connection end-points detecting and retransmitting incorrectly
decompressed headers, a multi-hop wireless sensor network
must perform in-network detection and retransmission in a
more aggressive manner because of the energy consumption
caused by end-to-end retransmissions. It should also be noted
that others are working on multi-hop aware header compres-
sion techniques [11] that could be beneficial for TCP/IP sensor
networks as well.

IV. APPLICATION OVERLAY ROUTING

The spatial IP addressing mechanism provides a way to send
IP packets to nodes specified by their spatial location, but a
pure IP packet routing scheme cannot readily support data
aggregation or attribute based routing. Instead, we believe that
application overlay networks may be a good way to implement
such mechanisms. At first sight, an overlay network might
seem too expensive for a wireless sensor network, because
of the mapping required between the physical network and
the overlay network. We argue, however, that by choosing an
overlay network that fits well with the underlying physical
nature of a sensor network, the mapping is not necessarily
expensive.

We believe that UDP datagrams sent using link local IP
broadcast [13] is a suitable mechanism for implementing an
application overlay network on top of the physical sensor net-
work structure. Link local broadcasts provide a direct mapping
between the application overlay and the underlying wireless

network topology. By tuning the header compression for the
special case of link-local broadcasts, the header overhead of
such packets does not need to be significantly larger than that
of a broadcast packet directly sent using the physical network
interface. Furthermore, link-local application layer broadcasts
can also be used to implement both low-level mechanisms
such as neighbor discovery and high-level protocols such as
Directed Diffusion [8].

In addition to the compatibility aspects, an application
layer overlay network also has the benefits of generality in
that it can be run transparently over both sensor nodes and
regular Internet hosts, without requiring proxies or protocol
converters.

V. TINY TCP/IP IMPLEMENTATION

It is often assumed that TCP/IP is too heavy-weight to be
feasible to implement on a small system such as a sensor node.
We have previously shown [4] that even a small system can run
the full TCP/IP protocol stack, albeit with lower performance
in terms of throughput. Our uIP TCP/IP implementation [4]
occupies only a few kilobytes of code space and requires
as little as a few hundreds bytes of memory, and we have
successfully ported it to the Embedded Sensor Board (ESB)
developed at FU Berlin [1]. The ESB is equipped with a
number of sensors, an RF transceiver, and an MSP430 low-
power 8-bit micro-controller with 2048 bytes of RAM and 60
kilobytes flash ROM.

VI. DISTRIBUTED TCP CACHING

The reliable byte-stream TCP was designed for wired net-
works where bit-errors are uncommon and where congestion
is the predominant source of packet drops. Therefore, TCP
always interprets packet drops as a sign of congestion and
reduces its sending rate in response to a dropped packet. Packet
drops in wireless networks are often due to bit-errors, which
leads TCP to misinterpret the packet loss as congestion. TCP
will then lower the sending rate, even though the network is
not congested.

Furthermore, TCP uses end-to-end retransmissions, which
in a multi-hop sensor network requires a retransmitted packet
to be forwarded by every sensor node on the path from the
sender to the receiver. As Wan et al. note, end-to-end recovery
is not a good candidate for reliable transport protocols in
sensor networks where error rates are in the range of 5% to
10% or even higher [15]. A scheme with local retransmissions
is more appropriate since it is able to move the point of
retransmission closer towards the final recipient of the packet.

To deal with these issues, we propose a scheme called
distributed TCP caching (DTC) that uses segment caching and
local retransmissions in cooperation with the link layer. Other
mechanisms for improving TCP performance over wireless
links, such as TCP snoop [2], focus on improving TCP
throughput. In contrast, DTC is primarily intended to reduce
the energy consumption required by TCP. DTC does not
require any protocol changes neither at the sender nor at the
receiver.

We assume that each sensor node is able to cache only a
small number of TCP segments; specifically, we assume that
nodes only have enough memory to cache a single segment.

1
2

3

Ack 1
1
Ack 2

2

ReceiverSender

Ack 4

Node 5
Node 7

Node 5

Node 7

1

Sender Receiver

Ack 2

2

2

Fig. 2. Distributed TCP caching (left) and spurious retransmission (right)

The left part of Figure 2 shows a simplified example how we
intend DTC to work. In this example, a TCP sender transmits
three TCP segments. Segment 1 is cached by node 5 right
before it is dropped in the network, and segment 2 is cached
by node 7 before being dropped. When receiving segment 3,
the TCP receiver sends an acknowledgment (ACK 1). When
receiving ACK 1, node 5, which has a cached copy of segment
1, performs a local retransmission. Node 5 also refrains from
forwarding the acknowledgment towards the TCP sender, so
that the acknowledgment segment does not have to travel all
the way through the network. When receiving the retransmitted
segment 1, the TCP receiver acknowledges this segment
by transmitting ACK 2. On reception of ACK 2, Node 7
performs a local retransmission of segment 2, which was
previously cached. This way, the TCP receiver obtains the two
dropped segments by local retransmissions from sensor nodes
in the network, without requiring retransmissions from the
TCP sender. When the acknowledgment ACK 4 is forwarded
towards the TCP sender, sensor nodes on the way can clear
their caches and are thus ready to cache new TCP segments.

A. Segment Caching and Packet Loss Detection
DTC uses segment caching to achieve local retransmissions.

Because of the memory limitations of the sensor nodes, it is
vital to the performance of the mechanism to find an appro-
priate way for nodes to select which segments to cache. Initial
analysis suggest that a desirable outcome of the selection
algorithm is that segments are cached at nodes as close to
the receiver as possible, and that nodes closer to the receiver
cache segments with lower sequence numbers. To achieve this,
each node caches the TCP segment with the highest sequence
number seen, and takes extra care to cache segments that are
likely to be dropped further along the path towards the receiver.
We use feedback from a link layer that supports positive
acknowledgments to infer packet drops on the next-hop. A
TCP segment that is forwarded but for which no link layer
acknowledgment is received may have been lost in transit,
and the segment is locked in the cache indicating that it should
not be overwritten by a TCP segment with a higher sequence
number. A locked segment is cleared from the cache only when
an acknowledgment that acknowledges the cached segment is
received, or when the segment times out.

To avoid retransmissions from the original TCP sender,
DTC needs to respond faster to packet drops than regular TCP.
DTC uses ordinary TCP mechanisms to detect packet loss:
time-outs and duplicate acknowledgments. Every node partic-
ipating in DTC maintains a soft TCP state for connections that
pass through the node. We assume symmetric and relatively
stable routes, and therefore the nodes can estimate the delays
between the node and the connection end-points. The delays
experienced by the nodes are lower than those estimated by the
TCP end-points, and the nodes are therefore able to use lower
time-out values and perform retransmissions quicker than the
connection end-points.

In TCP, duplicate acknowledgments signal either packet loss
or packet reordering. A TCP receiver uses a threshold of
three duplicate acknowledgments as a signal of packet loss,
which may be too conservative for DTC. Since each DTC
node inspects the TCP sequence numbers of forwarded TCP
segments, the nodes may be able to compute a heuristic for
the amount of packet reordering, and to lower the duplicate
acknowledgment threshold if packet reordering is found to be
uncommon in the network. Furthermore, care must be taken
to avoid spurious retransmissions caused by misinterpreting
acknowledgments for new data as acknowledgments that signal
packet loss, as shown in the right part of Figure 2. The nodes
can use estimated round-trip times to distinguish between
an acknowledgment that detects a lost packet and one that
acknowledges new data.

We are also considering using the TCP SACK option to
detect packet loss and also as a signaling mechanism between
DTC nodes.

B. Preliminary Results
We have performed simulations comparing standard TCP

with DTC. Our results show vast improvements: For path
lengths between 5 and 10 hops and packet loss rates between
5% and 15%, the number of retransmissions that the TCP
sender has to perform decreases by a factor of four to eight.
For example, with a packet loss rate of 10% for data packets
(5% for acknowledgments and 2% for link level acknowledg-
ments), a path length of 10 hops, and with 500 packets to
be transmitted the number of required source retransmission
decreases from 51 to 6 (averaged over 30 different runs).

In sensor networks, sensor data flows from sources to sinks,
whereas control or management data flows from sinks to
sources [15]. Therefore, nodes close to the sink usually are
the first to run out of energy because sensor data sent towards
the sink has to pass them. As shown by our initial simulation
results in Figure 3, DTC is able to reduce the load at the nodes
close to the sink/TCP sender.

We do not yet have any results from the TCP header
compression coupled with DTC, but our UDP/IP header com-
pressor is able to reduce UDP/IP headers for sensor data from
28 to three bytes.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we challenge the assumption that TCP/IP is
unsuitable for sensor networks. Our main contributions are a

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5 6 7 8 9

N
um

be
r p

ac
ke

ts
 s

en
t

Node number

without DTC
with DTC

Fig. 3. DTC load reduction close to sender

spatial IP address assignment scheme and a mechanism for
distributed segment caching called distributed TCP caching.

Future work will be targeted at further development and
evaluation of the proposed mechanisms using both simula-
tion and experiments with physical sensor networks. We are
currently looking into the interactions between the link layer
and header compression mechanisms that work together with
DTC. For DTC, we will consider the energy consumption
tradeoffs involved with link layers with different levels of
reliability. We also intend to compare DTC with transport
protocols specifically designed for sensor networks such as
PSFQ [15]. Furthermore, we are currently implementing the
DTC mechanism on actual sensor nodes in order to measure
real-world performance and preliminary results show that the
sensor nodes are capable of running both a full TCP/IP stack
and the DTC mechanism.

REFERENCES

[1] CST Group at FU Berlin. Scatterweb Embedded Sensor Board. Web
page. Visited 2003-10-21. http://www.scatterweb.com/

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. Improving TCP/IP
performance over wireless networks. In MOBICOM’95, 1995.

[3] M. Degermark, B. Nordgren, and S. Pink. IP header compression. RFC
2507, Internet Engineering Task Force, February 1999.

[4] A. Dunkels. Full TCP/IP for 8-bit architectures. In MOBISYS‘03, San
Francisco, California, May 2003.

[5] A. Dunkels, T. Voigt, J. Alonso, H. Ritter, and J. Schiller. Connecting
Wireless Sensornets with TCP/IP Networks. In WWIC2004, February
2004.

[6] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar. Next
century challenges: Scalable coordination in sensor networks. In Mobile
Computing and Networking, pages 263–270, 1999.

[7] Gavin Holland and Nitin H. Vaidya. Analysis of TCP performance over
mobile ad hoc networks. In MOBICOM ’99, August 1999.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
scalable and robust communication paradigm for sensor networks. In
Mobile Computing and Networking, pages 56–67, 2000.

[9] V. Jacobson. Compressing TCP/IP headers for low-speed serial links.
RFC 1144, Internet Engineering Task Force, February 1990.

[10] Julio C. Navas and Tomasz Imielinski. GeoCast – geographic addressing
and routing. In MOBICOM’97, pages 66–76, 1997.

[11] S. Mishra R. Sridharan, R. Sridhar. A robust header compression
technique for wireless ad hoc networks. In MobiHoc 2003, 2003.

[12] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava. Energy aware
wireless microsensor networks. IEEE Signal Processing Magazine,
19(2):40–50, March 2002.

[13] J. Reynolds and J. Postel. Assigned numbers. RFC 1700, Internet
Engineering Task Force, October 1994.

[14] A. Savvides, C. Han, and M. B. Strivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. In MOBICOM’01, pages
166–179. ACM Press, 2001.

[15] C.Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: A Reliable
Transport Protocol For Wireless Sensor Networks. In WSNA’02, 2002.

